Component-specific, cigarette particle deposition modeling in the human respiratory tract

نویسندگان

  • Bahman Asgharian
  • Owen T. Price
  • Caner U. Yurteri
  • Colin Dickens
  • John McAughey
چکیده

Inhalation of cigarette smoke particles (CSP) leads to adverse health effects in smokers. Determination of the localized dose to the lung of the inhaled smoke aids in determining vulnerable sites, and identifying components of the smoke that may be responsible for the adverse effects; thus providing a roadmap for harm reduction of cigarette smoking. A particle deposition model specific to CSP was developed for the oral cavity and the lung by accounting for cigarette particle size growth by hygroscopicity, phase change and coagulation. In addition, since the cigarette puff enters the respiratory tract as a dense cloud, the cloud effect on particle drag and deposition was accounted for in the deposition model. Models of particle losses in the oral cavities were developed during puff drawing and subsequent mouth-hold. Cigarette particles were found to grow by hygroscopicity and coagulation, but to shrink as a result of nicotine evaporation. The particle size reached a plateau beyond which any disturbances in the environmental conditions caused the various mechanisms to balance each other out and the particle size remain stable. Predicted particle deposition considering the cloud effects was greater than when treated as a collection of non-interacting particles (i.e. no cloud effects). Accounting for cloud movement provided the necessary physical mechanism to explain the greater than expected, experimentally observed and particle deposition. The deposition model for CSP can provide the necessary input to determine the fate of inhaled CSP in the lung. The knowledge of deposition will be helpful for health assessment and identification and reduction of harmful components of CSP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional Simulation of Mass Transfer and Nano-Particle Deposition of Cigarette Smoke in a Human Airway

The chance of developing lung cancer is increased through being exposed to cigarette smoke illustrated by studies. It is vital to understand the development of particular histologic-type cancers regarding the deposition of carcinogenic particles, which are present in human airway. In this paper, the mass transfer and deposition of cigarette smoke, inside the human airway, are investigated apply...

متن کامل

Study on airflow and inhaled particle deposition within realistic human upper respiratory tract

Based on the CT (Computerized Tomography) scanned images of a 19-years-old healthy boy, a realistic geometric model of URT from nasal cavity to the upper six-generation bronchial is rebuilt. To investigate airflow and particle deposition in the obtained realistic human upper respiratory tract, RNG k-ε turbulence model was used to describe the primary flow and particle deposition under three bre...

متن کامل

Particle Deposition in Human Respiratory Tract: Effect of Water- Soluble Fraction

In the nearly saturated human respiratory tract, the presence of water-soluble substances in inhaled aerosols can cause change in the size distribution of particles. This consequently alters the lung deposition profiles of the inhaled airborne particles. The magnitude of particle deposition in the lung is affected by the soluble component present in the particle. This is estimated by a numerica...

متن کامل

Lung injury after cigarette smoking is particle related

The specific component responsible and the mechanistic pathway for increased human morbidity and mortality after cigarette smoking are yet to be delineated. We propose that 1) injury and disease following cigarette smoking are associated with exposure to and retention of particles produced during smoking and 2) the biological effects of particles associated with cigarette smoking share a single...

متن کامل

Ambient sulfate aerosol deposition in man: modeling the influence of hygroscopicity.

Atmospheric sulfate aerosols [H2SO4, (NH4)2SO4, and NH4HSO4] are of international concern because of their global prevalence and potential irritant or toxic effects on humans. To assess hazards following inhalation exposure, the total dose delivered to the human respiratory tract and its regional distribution must be determined. The mass median aerodynamic diameter of the inhaled aerosol will i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014